Arithmetic properties of functions associated with Dirichlet $L$-functions
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 120-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers functions of the form $E_d(x,j)=\sum^{\infty}_{k=1}\bigl(\frac kd\bigr)x^hk^{-j}$, where $\bigl(\frac kd\bigr)$ is the Jacobian quadratic symbol, $d$ runs through all natural divisors of a given number $r,j=1,\ldots,s$. Linear independence is proved over the field of rationals for the values of these functions on small rational $x$. Effective lower bounds are obtained for linear forms with rational integral coefficients. The results, in particular, strengthen known bounds for polylogarithms. Hermite–Padé approximations of the second kind are used.
@article{MZM_1992_52_1_a16,
     author = {V. N. Sorokin},
     title = {Arithmetic properties of functions associated with {Dirichlet} $L$-functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {120--127},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a16/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Arithmetic properties of functions associated with Dirichlet $L$-functions
JO  - Matematičeskie zametki
PY  - 1992
SP  - 120
EP  - 127
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a16/
LA  - ru
ID  - MZM_1992_52_1_a16
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Arithmetic properties of functions associated with Dirichlet $L$-functions
%J Matematičeskie zametki
%D 1992
%P 120-127
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a16/
%G ru
%F MZM_1992_52_1_a16
V. N. Sorokin. Arithmetic properties of functions associated with Dirichlet $L$-functions. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 120-127. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a16/