On the existence of certain cyclic difference families and difference matrices
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 114-119
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem is proved to the effect that if there exists a $BIB$-schema with parameters $(p^m-1,k,k-1)$, where $k|(p^m-1)$, $p$ is prime, and $m$ is a natural number, then there exists a $BIB$-schema $(p^{mn}-1,k,k-1)$. A consequence is the existnece of a cyclic $BIB$-schema $(p^{mn}-1,p^m-1,p^m-2)$ (($p^m-1$ is prime) that specifies each ordered pair of difference elements at any distance $\rho=1,2,\dots,p^m-2$ (cyclically) precisely once. Recursive theorems on the existence of difference matrices and $(\nu,k,k)$-difference families in the group $Z_v$ of residue classes mod v are proved, along with a theorem on difference families in an additive abelian group.
@article{MZM_1992_52_1_a15,
author = {B. T. Rumov},
title = {On the existence of certain cyclic difference families and difference matrices},
journal = {Matemati\v{c}eskie zametki},
pages = {114--119},
year = {1992},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a15/}
}
B. T. Rumov. On the existence of certain cyclic difference families and difference matrices. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 114-119. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a15/