Generalization of the Hardy–Littlewood theorem on functions with derivatives in the space $H_1$
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 87-93
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose $f$ is a function that is analytic in the disk $D=\{z:|z|<1\}$ and belongs to the Hardy space $H_1$. Then, by the Hardy–Littlewood theorem, the following conditions are equivalent: (a) $f'\in H_1$; (b) $f$ coincides with some function of bounded variation almost everywhere on $\partial D$; (c) almost everywhere on $\partial D$, the function $f$ coincides with some absolutely continuous function; (d) for an integral modulus of continuity $f-\omega(f,\delta)$ for the function $f$, we have $\omega(f,\delta)=O(\delta)$. This article presents a generalization of this theorem to higher derivatives in the space $H_p$. The notions of generalized absolute continuity, generalized variation, and higher-order moduli of smoothness are used for this purpose.
@article{MZM_1992_52_1_a12,
author = {A. A. Pekarskii},
title = {Generalization of the {Hardy{\textendash}Littlewood} theorem on functions with derivatives in the space~$H_1$},
journal = {Matemati\v{c}eskie zametki},
pages = {87--93},
year = {1992},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a12/}
}
A. A. Pekarskii. Generalization of the Hardy–Littlewood theorem on functions with derivatives in the space $H_1$. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a12/