On local automorphisms of certain quadrics of codimension 2
Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers nondegenerate quadrics in $\mathbf{C}^{n+1}$ with codimension 2 that are of the form $M=\{z\in\mathbf{C}^n$, $\omega\in\mathbf{C}^2:\operatorname{Im}\omega_j=\langle z,z\rangle_j$; $j=1,2\}$, where $\langle z,z\rangle_j=\sum^n_{\mu,\nu=1^{\omega^j}\mu\nu^z\mu^{\bar{z}}\nu}$ are Hermitian forms, and thje stability groups $\operatorname{Aut}_xM$ that preserve the point $x$. It is proved that if the matrix $\omega^1$ is stable and the matrix $(\omega^1)^{-1}\omega^2$ has more than two different eigenvalues, all automorphisms of $\operatorname{Aut}_xM$ are linear transformations.
@article{MZM_1992_52_1_a1,
     author = {A. V. Abrosimov},
     title = {On local automorphisms of certain quadrics of codimension 2},
     journal = {Matemati\v{c}eskie zametki},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a1/}
}
TY  - JOUR
AU  - A. V. Abrosimov
TI  - On local automorphisms of certain quadrics of codimension 2
JO  - Matematičeskie zametki
PY  - 1992
SP  - 9
EP  - 14
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a1/
LA  - ru
ID  - MZM_1992_52_1_a1
ER  - 
%0 Journal Article
%A A. V. Abrosimov
%T On local automorphisms of certain quadrics of codimension 2
%J Matematičeskie zametki
%D 1992
%P 9-14
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a1/
%G ru
%F MZM_1992_52_1_a1
A. V. Abrosimov. On local automorphisms of certain quadrics of codimension 2. Matematičeskie zametki, Tome 52 (1992) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/MZM_1992_52_1_a1/