The best $L_1$-approximations by splines in the presence of restrictions on their derivatives
Matematičeskie zametki, Tome 51 (1992) no. 5, pp. 12-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1992_51_5_a1,
     author = {V. F. Babenko},
     title = {The best $L_1$-approximations by splines in the presence of restrictions on their derivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {12--19},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1992_51_5_a1/}
}
TY  - JOUR
AU  - V. F. Babenko
TI  - The best $L_1$-approximations by splines in the presence of restrictions on their derivatives
JO  - Matematičeskie zametki
PY  - 1992
SP  - 12
EP  - 19
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1992_51_5_a1/
LA  - ru
ID  - MZM_1992_51_5_a1
ER  - 
%0 Journal Article
%A V. F. Babenko
%T The best $L_1$-approximations by splines in the presence of restrictions on their derivatives
%J Matematičeskie zametki
%D 1992
%P 12-19
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1992_51_5_a1/
%G ru
%F MZM_1992_51_5_a1
V. F. Babenko. The best $L_1$-approximations by splines in the presence of restrictions on their derivatives. Matematičeskie zametki, Tome 51 (1992) no. 5, pp. 12-19. http://geodesic.mathdoc.fr/item/MZM_1992_51_5_a1/