The number of solutions of the equation $ax_1x_2+bx_3x_4=N$
Matematičeskie zametki, Tome 49 (1991) no. 5, pp. 151-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1991_49_5_a20,
     author = {S. A. Zakharov},
     title = {The number of solutions of the equation $ax_1x_2+bx_3x_4=N$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {151--152},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_5_a20/}
}
TY  - JOUR
AU  - S. A. Zakharov
TI  - The number of solutions of the equation $ax_1x_2+bx_3x_4=N$
JO  - Matematičeskie zametki
PY  - 1991
SP  - 151
EP  - 152
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1991_49_5_a20/
LA  - ru
ID  - MZM_1991_49_5_a20
ER  - 
%0 Journal Article
%A S. A. Zakharov
%T The number of solutions of the equation $ax_1x_2+bx_3x_4=N$
%J Matematičeskie zametki
%D 1991
%P 151-152
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1991_49_5_a20/
%G ru
%F MZM_1991_49_5_a20
S. A. Zakharov. The number of solutions of the equation $ax_1x_2+bx_3x_4=N$. Matematičeskie zametki, Tome 49 (1991) no. 5, pp. 151-152. http://geodesic.mathdoc.fr/item/MZM_1991_49_5_a20/