A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals
Matematičeskie zametki, Tome 49 (1991) no. 4, pp. 63-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1991_49_4_a6,
     author = {G. A. Karagulian},
     title = {A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--68},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/}
}
TY  - JOUR
AU  - G. A. Karagulian
TI  - A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals
JO  - Matematičeskie zametki
PY  - 1991
SP  - 63
EP  - 68
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/
LA  - ru
ID  - MZM_1991_49_4_a6
ER  - 
%0 Journal Article
%A G. A. Karagulian
%T A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals
%J Matematičeskie zametki
%D 1991
%P 63-68
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/
%G ru
%F MZM_1991_49_4_a6
G. A. Karagulian. A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals. Matematičeskie zametki, Tome 49 (1991) no. 4, pp. 63-68. http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/