A necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals
Matematičeskie zametki, Tome 49 (1991) no. 4, pp. 63-68
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1991_49_4_a6,
author = {G. A. Karagulian},
title = {A~necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals},
journal = {Matemati\v{c}eskie zametki},
pages = {63--68},
year = {1991},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/}
}
TY - JOUR AU - G. A. Karagulian TI - A necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals JO - Matematičeskie zametki PY - 1991 SP - 63 EP - 68 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/ LA - ru ID - MZM_1991_49_4_a6 ER -
%0 Journal Article %A G. A. Karagulian %T A necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals %J Matematičeskie zametki %D 1991 %P 63-68 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/ %G ru %F MZM_1991_49_4_a6
G. A. Karagulian. A necessary and sufficient condition for differentiability of integrals of random measures in $R^n$ over $n$-dimensional intervals. Matematičeskie zametki, Tome 49 (1991) no. 4, pp. 63-68. http://geodesic.mathdoc.fr/item/MZM_1991_49_4_a6/