Lattice definability of a semisimple finite-dimensional binary-Lie algebra over an algebraically closed field of characteristic~0
Matematičeskie zametki, Tome 49 (1991) no. 3, pp. 131-134
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1991_49_3_a17,
author = {E. I. Chupina},
title = {Lattice definability of a semisimple finite-dimensional {binary-Lie} algebra over an algebraically closed field of characteristic~0},
journal = {Matemati\v{c}eskie zametki},
pages = {131--134},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_3_a17/}
}
TY - JOUR AU - E. I. Chupina TI - Lattice definability of a semisimple finite-dimensional binary-Lie algebra over an algebraically closed field of characteristic~0 JO - Matematičeskie zametki PY - 1991 SP - 131 EP - 134 VL - 49 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1991_49_3_a17/ LA - ru ID - MZM_1991_49_3_a17 ER -
%0 Journal Article %A E. I. Chupina %T Lattice definability of a semisimple finite-dimensional binary-Lie algebra over an algebraically closed field of characteristic~0 %J Matematičeskie zametki %D 1991 %P 131-134 %V 49 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1991_49_3_a17/ %G ru %F MZM_1991_49_3_a17
E. I. Chupina. Lattice definability of a semisimple finite-dimensional binary-Lie algebra over an algebraically closed field of characteristic~0. Matematičeskie zametki, Tome 49 (1991) no. 3, pp. 131-134. http://geodesic.mathdoc.fr/item/MZM_1991_49_3_a17/