Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1991_49_1_a5, author = {A. M. Gomilko and G. V. Radzievskii}, title = {Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator}, journal = {Matemati\v{c}eskie zametki}, pages = {47--55}, publisher = {mathdoc}, volume = {49}, number = {1}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/} }
TY - JOUR AU - A. M. Gomilko AU - G. V. Radzievskii TI - Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator JO - Matematičeskie zametki PY - 1991 SP - 47 EP - 55 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/ LA - ru ID - MZM_1991_49_1_a5 ER -
%0 Journal Article %A A. M. Gomilko %A G. V. Radzievskii %T Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator %J Matematičeskie zametki %D 1991 %P 47-55 %V 49 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/ %G ru %F MZM_1991_49_1_a5
A. M. Gomilko; G. V. Radzievskii. Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator. Matematičeskie zametki, Tome 49 (1991) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/