Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
Matematičeskie zametki, Tome 49 (1991) no. 1, pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1991_49_1_a5,
     author = {A. M. Gomilko and G. V. Radzievskii},
     title = {Equivalence in $L_p[0,1]$ of the system  $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/}
}
TY  - JOUR
AU  - A. M. Gomilko
AU  - G. V. Radzievskii
TI  - Equivalence in $L_p[0,1]$ of the system  $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
JO  - Matematičeskie zametki
PY  - 1991
SP  - 47
EP  - 55
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/
LA  - ru
ID  - MZM_1991_49_1_a5
ER  - 
%0 Journal Article
%A A. M. Gomilko
%A G. V. Radzievskii
%T Equivalence in $L_p[0,1]$ of the system  $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
%J Matematičeskie zametki
%D 1991
%P 47-55
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/
%G ru
%F MZM_1991_49_1_a5
A. M. Gomilko; G. V. Radzievskii. Equivalence in $L_p[0,1]$ of the system  $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator. Matematičeskie zametki, Tome 49 (1991) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/