Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
Matematičeskie zametki, Tome 49 (1991) no. 1, pp. 47-55
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1991_49_1_a5,
author = {A. M. Gomilko and G. V. Radzievskii},
title = {Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator},
journal = {Matemati\v{c}eskie zametki},
pages = {47--55},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/}
}
TY - JOUR
AU - A. M. Gomilko
AU - G. V. Radzievskii
TI - Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
JO - Matematičeskie zametki
PY - 1991
SP - 47
EP - 55
VL - 49
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/
LA - ru
ID - MZM_1991_49_1_a5
ER -
%0 Journal Article
%A A. M. Gomilko
%A G. V. Radzievskii
%T Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator
%J Matematičeskie zametki
%D 1991
%P 47-55
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/
%G ru
%F MZM_1991_49_1_a5
A. M. Gomilko; G. V. Radzievskii. Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator. Matematičeskie zametki, Tome 49 (1991) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/MZM_1991_49_1_a5/