The problem of the number of zeros of an elliptic integral is semialgebraic
Matematičeskie zametki, Tome 44 (1988) no. 3, pp. 393-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1988_44_3_a10,
     author = {G. S. Petrov},
     title = {The problem of the number of zeros of an elliptic integral is semialgebraic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {393--401},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1988_44_3_a10/}
}
TY  - JOUR
AU  - G. S. Petrov
TI  - The problem of the number of zeros of an elliptic integral is semialgebraic
JO  - Matematičeskie zametki
PY  - 1988
SP  - 393
EP  - 401
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1988_44_3_a10/
LA  - ru
ID  - MZM_1988_44_3_a10
ER  - 
%0 Journal Article
%A G. S. Petrov
%T The problem of the number of zeros of an elliptic integral is semialgebraic
%J Matematičeskie zametki
%D 1988
%P 393-401
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1988_44_3_a10/
%G ru
%F MZM_1988_44_3_a10
G. S. Petrov. The problem of the number of zeros of an elliptic integral is semialgebraic. Matematičeskie zametki, Tome 44 (1988) no. 3, pp. 393-401. http://geodesic.mathdoc.fr/item/MZM_1988_44_3_a10/