Separable reflexive banach spaces that are universal for the class of the spaces $L_p(1$
Matematičeskie zametki, Tome 40 (1986) no. 5, pp. 640-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1986_40_5_a8,
     author = {E. V. Tokarev},
     title = {Separable reflexive banach spaces that are universal for the class of the spaces $L_p(1<p<\infty)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {640--644},
     publisher = {mathdoc},
     volume = {40},
     number = {5},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1986_40_5_a8/}
}
TY  - JOUR
AU  - E. V. Tokarev
TI  - Separable reflexive banach spaces that are universal for the class of the spaces $L_p(1
JO  - Matematičeskie zametki
PY  - 1986
SP  - 640
EP  - 644
VL  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1986_40_5_a8/
LA  - ru
ID  - MZM_1986_40_5_a8
ER  - 
%0 Journal Article
%A E. V. Tokarev
%T Separable reflexive banach spaces that are universal for the class of the spaces $L_p(1
%J Matematičeskie zametki
%D 1986
%P 640-644
%V 40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1986_40_5_a8/
%G ru
%F MZM_1986_40_5_a8
E. V. Tokarev. Separable reflexive banach spaces that are universal for the class of the spaces $L_p(1