The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics
Matematičeskie zametki, Tome 32 (1982) no. 3, pp. 285-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1982_32_3_a2,
     author = {A. I. Kamzolov},
     title = {The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1982_32_3_a2/}
}
TY  - JOUR
AU  - A. I. Kamzolov
TI  - The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics
JO  - Matematičeskie zametki
PY  - 1982
SP  - 285
EP  - 293
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1982_32_3_a2/
LA  - ru
ID  - MZM_1982_32_3_a2
ER  - 
%0 Journal Article
%A A. I. Kamzolov
%T The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics
%J Matematičeskie zametki
%D 1982
%P 285-293
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1982_32_3_a2/
%G ru
%F MZM_1982_32_3_a2
A. I. Kamzolov. The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics. Matematičeskie zametki, Tome 32 (1982) no. 3, pp. 285-293. http://geodesic.mathdoc.fr/item/MZM_1982_32_3_a2/