Conditions for riesz means of spectral resolutions to be a basis in $L_p(\mathbf R^n)$
Matematičeskie zametki, Tome 29 (1981) no. 5, pp. 673-684
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1981_29_5_a2,
author = {R. R. Ashurov},
title = {Conditions for riesz means of spectral resolutions to be a basis in $L_p(\mathbf R^n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {673--684},
publisher = {mathdoc},
volume = {29},
number = {5},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1981_29_5_a2/}
}
R. R. Ashurov. Conditions for riesz means of spectral resolutions to be a basis in $L_p(\mathbf R^n)$. Matematičeskie zametki, Tome 29 (1981) no. 5, pp. 673-684. http://geodesic.mathdoc.fr/item/MZM_1981_29_5_a2/