The best approximations in $L_2(0,2\pi)$ of classes of periodic functions with derivatives of bounded variation
Matematičeskie zametki, Tome 28 (1980) no. 2, pp. 239-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1980_28_2_a4,
     author = {L. V. Taikov},
     title = {The best approximations in $L_2(0,2\pi)$ of classes of periodic functions with derivatives of bounded variation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--242},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1980_28_2_a4/}
}
TY  - JOUR
AU  - L. V. Taikov
TI  - The best approximations in $L_2(0,2\pi)$ of classes of periodic functions with derivatives of bounded variation
JO  - Matematičeskie zametki
PY  - 1980
SP  - 239
EP  - 242
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1980_28_2_a4/
LA  - ru
ID  - MZM_1980_28_2_a4
ER  - 
%0 Journal Article
%A L. V. Taikov
%T The best approximations in $L_2(0,2\pi)$ of classes of periodic functions with derivatives of bounded variation
%J Matematičeskie zametki
%D 1980
%P 239-242
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1980_28_2_a4/
%G ru
%F MZM_1980_28_2_a4
L. V. Taikov. The best approximations in $L_2(0,2\pi)$ of classes of periodic functions with derivatives of bounded variation. Matematičeskie zametki, Tome 28 (1980) no. 2, pp. 239-242. http://geodesic.mathdoc.fr/item/MZM_1980_28_2_a4/