$\omega$-Limit sets of smooth cylindrical cascades
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 873-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)$ be a smooth function on the circle $S^1$, $x\pmod1$, $\int_{S_1}f(x)\,dx=0$, $\alpha$ be an irrational number, and qn be the denominators of convergents of continued fractions. In this note a classification of $\omega$-limit sets for the cylindrical cascade $$ T:(x,y)\to(x+\alpha,y+f(x)), $$ $x\in S^1$, $y\in R$, is obtained. Criteria for the solvability of the equation $g(x+\alpha)-g(x)=f(x)$ are found. Estimates for the speed of decrease of the function $$ h_{q_n}(x)=\sum_{i=0}^{q_n-1}f(x+ia). $$ as $n\to\infty$ are obtained.
@article{MZM_1978_23_6_a9,
     author = {A. B. Krygin},
     title = {$\omega${-Limit} sets of smooth cylindrical cascades},
     journal = {Matemati\v{c}eskie zametki},
     pages = {873--884},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a9/}
}
TY  - JOUR
AU  - A. B. Krygin
TI  - $\omega$-Limit sets of smooth cylindrical cascades
JO  - Matematičeskie zametki
PY  - 1978
SP  - 873
EP  - 884
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a9/
LA  - ru
ID  - MZM_1978_23_6_a9
ER  - 
%0 Journal Article
%A A. B. Krygin
%T $\omega$-Limit sets of smooth cylindrical cascades
%J Matematičeskie zametki
%D 1978
%P 873-884
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a9/
%G ru
%F MZM_1978_23_6_a9
A. B. Krygin. $\omega$-Limit sets of smooth cylindrical cascades. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 873-884. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a9/