$\rho$-Continuity of a~metric projection onto convex closed sets
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 845-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear normed spaces are characterized for which the metric projection onto every nonempty convex closed set is $\rho$-continuous. Some sufficient conditions are obtained for $H$-continuity of a metric projection.
@article{MZM_1978_23_6_a6,
     author = {N. V. Nevesenko},
     title = {$\rho${-Continuity} of a~metric projection onto convex closed sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {845--854},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a6/}
}
TY  - JOUR
AU  - N. V. Nevesenko
TI  - $\rho$-Continuity of a~metric projection onto convex closed sets
JO  - Matematičeskie zametki
PY  - 1978
SP  - 845
EP  - 854
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a6/
LA  - ru
ID  - MZM_1978_23_6_a6
ER  - 
%0 Journal Article
%A N. V. Nevesenko
%T $\rho$-Continuity of a~metric projection onto convex closed sets
%J Matematičeskie zametki
%D 1978
%P 845-854
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a6/
%G ru
%F MZM_1978_23_6_a6
N. V. Nevesenko. $\rho$-Continuity of a~metric projection onto convex closed sets. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 845-854. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a6/