Asymptotic formula for the mean value of a multiple trigonometric sum
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 799-816
Cet article a éte moissonné depuis la source Math-Net.Ru
When $k\ge k_0=10$ $M_{r^2}n\log(rn)$ we have for the trigonometric integral $$ J_n(k,P)=\int_E|S(A)|^{2k}\,dA, $$ where \begin{gather*} S(A)=\sum_{x_1=1}^P\dots\sum_{x_r=1}^P\exp(2\pi if_A(x_1,\dots,x_r)),\\ f_A(x_1,\dots,x_r)=\sum_{t_1=0}^n\dots\sum_{t_r=0}^n\alpha_{t_1\dots t_r}x_1^{t_1}\dots x_{r^r}^r \end{gather*} and $E$ is the $M$-dimensional unit cube, the asymptotic formula $$ J_n(k,P)=\sigma\theta P^{2kr-rnM/2}+O(P^{2kr-rnM/2-1/(2M)})+O(P^{2kr-rnM/2-1/(500r^2\log(rn))}), $$ where $\sigma$ is a singular series and $\theta$ is a singular integral.
@article{MZM_1978_23_6_a2,
author = {V. N. Chubarikov},
title = {Asymptotic formula for the mean value of a~multiple trigonometric sum},
journal = {Matemati\v{c}eskie zametki},
pages = {799--816},
year = {1978},
volume = {23},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/}
}
V. N. Chubarikov. Asymptotic formula for the mean value of a multiple trigonometric sum. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 799-816. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/