Asymptotic formula for the mean value of a~multiple trigonometric sum
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 799-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

When $k\ge k_0=10$ $M_{r^2}n\log(rn)$ we have for the trigonometric integral $$ J_n(k,P)=\int_E|S(A)|^{2k}\,dA, $$ where \begin{gather*} S(A)=\sum_{x_1=1}^P\dots\sum_{x_r=1}^P\exp(2\pi if_A(x_1,\dots,x_r)),\\ f_A(x_1,\dots,x_r)=\sum_{t_1=0}^n\dots\sum_{t_r=0}^n\alpha_{t_1\dots t_r}x_1^{t_1}\dots x_{r^r}^r \end{gather*} and $E$ is the $M$-dimensional unit cube, the asymptotic formula $$ J_n(k,P)=\sigma\theta P^{2kr-rnM/2}+O(P^{2kr-rnM/2-1/(2M)})+O(P^{2kr-rnM/2-1/(500r^2\log(rn))}), $$ where $\sigma$ is a singular series and $\theta$ is a singular integral.
@article{MZM_1978_23_6_a2,
     author = {V. N. Chubarikov},
     title = {Asymptotic formula for the mean value of a~multiple trigonometric sum},
     journal = {Matemati\v{c}eskie zametki},
     pages = {799--816},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - Asymptotic formula for the mean value of a~multiple trigonometric sum
JO  - Matematičeskie zametki
PY  - 1978
SP  - 799
EP  - 816
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/
LA  - ru
ID  - MZM_1978_23_6_a2
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T Asymptotic formula for the mean value of a~multiple trigonometric sum
%J Matematičeskie zametki
%D 1978
%P 799-816
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/
%G ru
%F MZM_1978_23_6_a2
V. N. Chubarikov. Asymptotic formula for the mean value of a~multiple trigonometric sum. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 799-816. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a2/