$m$-Degrees of supersets of simple sets
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 889-893
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a simple, but not hypersimple, set $A$ such that $B\underset{\displaystyle m}\le A$ whenever $A\subseteq B$ for every recursively enumerable set $B$.
@article{MZM_1978_23_6_a11,
author = {A. N. Degtev},
title = {$m${-Degrees} of supersets of simple sets},
journal = {Matemati\v{c}eskie zametki},
pages = {889--893},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/}
}
A. N. Degtev. $m$-Degrees of supersets of simple sets. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 889-893. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/