$m$-Degrees of supersets of simple sets
Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 889-893.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a simple, but not hypersimple, set $A$ such that $B\underset{\displaystyle m}\le A$ whenever $A\subseteq B$ for every recursively enumerable set $B$.
@article{MZM_1978_23_6_a11,
     author = {A. N. Degtev},
     title = {$m${-Degrees} of supersets of simple sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {889--893},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/}
}
TY  - JOUR
AU  - A. N. Degtev
TI  - $m$-Degrees of supersets of simple sets
JO  - Matematičeskie zametki
PY  - 1978
SP  - 889
EP  - 893
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/
LA  - ru
ID  - MZM_1978_23_6_a11
ER  - 
%0 Journal Article
%A A. N. Degtev
%T $m$-Degrees of supersets of simple sets
%J Matematičeskie zametki
%D 1978
%P 889-893
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/
%G ru
%F MZM_1978_23_6_a11
A. N. Degtev. $m$-Degrees of supersets of simple sets. Matematičeskie zametki, Tome 23 (1978) no. 6, pp. 889-893. http://geodesic.mathdoc.fr/item/MZM_1978_23_6_a11/