Determination of the infinite Jacobi matrix with respect to two-spectra
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 709-720
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse problem about two-spectra for the equation
\begin{gather*}
b_0y_0+a_0y_1=\lambda y_0,\\
a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1}=\lambda y_n\qquad (n=1,2,3,\dots),\tag{1}
\end{gather*}
where $\{y_n\}_0^\infty$ is the desired solution, $\lambda$ is a complex parameter and
$$
a_n>0, \quad\mathrm{Im}\,b_n=0,\qquad (n=0,1,2,\dots)
$$
is studied. Necessary and sufficient conditions for the solvability of the inverse problem
about two-spectra for Eq. (1) are established and also the procedure of reconstruction of the equation from its two-spectra is indicated.
@article{MZM_1978_23_5_a6,
author = {G. Sh. Guseinov},
title = {Determination of the infinite {Jacobi} matrix with respect to two-spectra},
journal = {Matemati\v{c}eskie zametki},
pages = {709--720},
publisher = {mathdoc},
volume = {23},
number = {5},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a6/}
}
G. Sh. Guseinov. Determination of the infinite Jacobi matrix with respect to two-spectra. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 709-720. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a6/