Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 685-695
Cet article a éte moissonné depuis la source Math-Net.Ru
Criteria for a Haar system to be a basic system and an unconditional basic system in the spaces $$ \Lambda_\omega^p=\{f\in L^p: \omega_p(\delta, f)=O\{\omega(\delta)\}\}, $$ where $1
and $\omega$ is a modulus of continuity, are proved.
@article{MZM_1978_23_5_a4,
author = {V. G. Krotov},
title = {Unconditional convergence of {Fourier} series with respect to the {Haar} system in the spaces $\Lambda_\omega^p$},
journal = {Matemati\v{c}eskie zametki},
pages = {685--695},
year = {1978},
volume = {23},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/}
}
TY - JOUR AU - V. G. Krotov TI - Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$ JO - Matematičeskie zametki PY - 1978 SP - 685 EP - 695 VL - 23 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/ LA - ru ID - MZM_1978_23_5_a4 ER -
V. G. Krotov. Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 685-695. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/