Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 685-695.

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for a Haar system to be a basic system and an unconditional basic system in the spaces $$ \Lambda_\omega^p=\{f\in L^p: \omega_p(\delta, f)=O\{\omega(\delta)\}\}, $$ where $1$ and $\omega$ is a modulus of continuity, are proved.
@article{MZM_1978_23_5_a4,
     author = {V. G. Krotov},
     title = {Unconditional convergence of {Fourier} series with respect to the {Haar} system in the spaces $\Lambda_\omega^p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {685--695},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$
JO  - Matematičeskie zametki
PY  - 1978
SP  - 685
EP  - 695
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/
LA  - ru
ID  - MZM_1978_23_5_a4
ER  - 
%0 Journal Article
%A V. G. Krotov
%T Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$
%J Matematičeskie zametki
%D 1978
%P 685-695
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/
%G ru
%F MZM_1978_23_5_a4
V. G. Krotov. Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 685-695. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a4/