Two-dimensional modal logic
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 759-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Propositional logics with many modalites, characterized by “two-dimensional” Kripke models, are investigated. The general problem can be formulated as follows: from two modal logics describing certain classes of Kripke modal lattices construct a logic describing all products of Kripke lattices from these classes. For a large number of cases such a logic is obtained by joining to the original logics an axiom of the form $\square_i\square_jp\equiv\square_j\square_ip$ and $\lozenge_i\square_jp\supset\square_j\lozenge_ip$. A special case of this problem, leading to the logic of a torus $S5\times S5$ was solved by Segerberg [1].
@article{MZM_1978_23_5_a12,
     author = {V. B. Shekhtman},
     title = {Two-dimensional modal logic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--772},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a12/}
}
TY  - JOUR
AU  - V. B. Shekhtman
TI  - Two-dimensional modal logic
JO  - Matematičeskie zametki
PY  - 1978
SP  - 759
EP  - 772
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a12/
LA  - ru
ID  - MZM_1978_23_5_a12
ER  - 
%0 Journal Article
%A V. B. Shekhtman
%T Two-dimensional modal logic
%J Matematičeskie zametki
%D 1978
%P 759-772
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a12/
%G ru
%F MZM_1978_23_5_a12
V. B. Shekhtman. Two-dimensional modal logic. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 759-772. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a12/