Uniform structures and the equivalence of diffeomorphisms
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 739-752.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new equivalence relation between diffeomorphisms of a compact manifold, viz., $\delta$-equivalence, is defined on the basis of concepts in uniform topology. The $\delta$-equivalence classes of the identity map, the $Y$-diffeomorphisms of infra-nullmanifolds, and the connection between $\delta$-equivalence and topological entropy are studied. The proofs make use of an effective description of the uniform-homotopy type of the “nonautonomous suspensions over diffeomorphisms” described in the paper. The connection between diffeomorphisms and non-autonomous flows is considered; moreover, the nonhomotopy of the $Y$-diffeomorphism of the identity map is proved.
@article{MZM_1978_23_5_a10,
     author = {A. G. Vainshtein and L. M. Lerman},
     title = {Uniform structures and the equivalence of diffeomorphisms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--752},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a10/}
}
TY  - JOUR
AU  - A. G. Vainshtein
AU  - L. M. Lerman
TI  - Uniform structures and the equivalence of diffeomorphisms
JO  - Matematičeskie zametki
PY  - 1978
SP  - 739
EP  - 752
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a10/
LA  - ru
ID  - MZM_1978_23_5_a10
ER  - 
%0 Journal Article
%A A. G. Vainshtein
%A L. M. Lerman
%T Uniform structures and the equivalence of diffeomorphisms
%J Matematičeskie zametki
%D 1978
%P 739-752
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a10/
%G ru
%F MZM_1978_23_5_a10
A. G. Vainshtein; L. M. Lerman. Uniform structures and the equivalence of diffeomorphisms. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 739-752. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a10/