Finite groups admitting a fixed-point-free 2-automorphism
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 651-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a finite group admits a fixed-point-free automorphism of order $2^n$, then its nilpotent length is at most $n$. It had been proved by Gross [1] that its nilpotent length is at most $2n-2$.
@article{MZM_1978_23_5_a1,
     author = {E. I. Khukhro},
     title = {Finite groups admitting a fixed-point-free 2-automorphism},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--657},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - Finite groups admitting a fixed-point-free 2-automorphism
JO  - Matematičeskie zametki
PY  - 1978
SP  - 651
EP  - 657
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/
LA  - ru
ID  - MZM_1978_23_5_a1
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T Finite groups admitting a fixed-point-free 2-automorphism
%J Matematičeskie zametki
%D 1978
%P 651-657
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/
%G ru
%F MZM_1978_23_5_a1
E. I. Khukhro. Finite groups admitting a fixed-point-free 2-automorphism. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 651-657. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/