Finite groups admitting a fixed-point-free 2-automorphism
Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 651-657
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a finite group admits a fixed-point-free automorphism of order $2^n$,
then its nilpotent length is at most $n$. It had been proved by Gross [1] that its nilpotent
length is at most $2n-2$.
@article{MZM_1978_23_5_a1,
author = {E. I. Khukhro},
title = {Finite groups admitting a fixed-point-free 2-automorphism},
journal = {Matemati\v{c}eskie zametki},
pages = {651--657},
publisher = {mathdoc},
volume = {23},
number = {5},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/}
}
E. I. Khukhro. Finite groups admitting a fixed-point-free 2-automorphism. Matematičeskie zametki, Tome 23 (1978) no. 5, pp. 651-657. http://geodesic.mathdoc.fr/item/MZM_1978_23_5_a1/