Lebesgue--Banach points of functions in symmetric spaces
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 581-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a symmetric space $E$ (Ref. Zh. Mat. IIB391) of measurable functions in the interval $[0,1]$ we introduce a characteristic $$ \Pi(E)=\inf\biggl\|\sum_{i=1}^nx_i\biggl(\frac{t-\tau_{i-1}}{\tau_i-\tau_{i-1}}\biggr)\varkappa_{[\tau_{i-1},\tau_i]}(t)\biggr\|_E, $$ where $\varkappa_{[\tau_{i-1},\tau_i]}(t)$ is a characteristic function and the $\inf$ is taken over all $n$ and the sets $x_i(t)\in E$, $\|x_i\|_E=1$ and $\tau_i\in[0,1]$ ($0=\tau_0\tau_1\dots\tau_n=1$, $i=1,2,\dots,n$). We prove the following THEOREM. The conditions $\Pi(E)>0$ and separability are necessary and sufficient for almost all the points of the interval $[0,1]$ to be Lebesgue–Banach points for any function $f\in E$. If at least one of these conditions is not satisfied, then there exists in $E$ a function such that almost all the points of the interval $[0,1]$ are not its Lebesgue–Banach points.
@article{MZM_1978_23_4_a9,
     author = {L. Kh. Poritskaya},
     title = {Lebesgue--Banach points of functions in symmetric spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--592},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a9/}
}
TY  - JOUR
AU  - L. Kh. Poritskaya
TI  - Lebesgue--Banach points of functions in symmetric spaces
JO  - Matematičeskie zametki
PY  - 1978
SP  - 581
EP  - 592
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a9/
LA  - ru
ID  - MZM_1978_23_4_a9
ER  - 
%0 Journal Article
%A L. Kh. Poritskaya
%T Lebesgue--Banach points of functions in symmetric spaces
%J Matematičeskie zametki
%D 1978
%P 581-592
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a9/
%G ru
%F MZM_1978_23_4_a9
L. Kh. Poritskaya. Lebesgue--Banach points of functions in symmetric spaces. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 581-592. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a9/