One property of best quadrature formulas
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 551-562
Cet article a éte moissonné depuis la source Math-Net.Ru
It is established that for class $W_p^r$ $(r=1,2,\dots;1\le p\le\infty)$ the best quadrature formulas of the form \begin{gather*} \int_0^1f(x)\,dx=\sum_{k=0}^\rho\sum_{i=1}^na_{ik}f^{(k)}(x_i)+R(f) \\ (0\le\rho\le r-1) \end{gather*} when $\rho=2m$ and $\rho=2m+1$ coincide with one another. This same fact also supervenes for the class $\widetilde{W}_p^r$ ($r=1,2,\dots$; $1\le p\le\infty$) of periodic functions.
@article{MZM_1978_23_4_a6,
author = {A. A. Zhensykbaev},
title = {One property of best quadrature formulas},
journal = {Matemati\v{c}eskie zametki},
pages = {551--562},
year = {1978},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a6/}
}
A. A. Zhensykbaev. One property of best quadrature formulas. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 551-562. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a6/