An estimate of the speed of convergence in the multidmensional central limit theorem without moment hypotheses
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 627-640
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n$ ($n\ge1$) be independent random vectors in $R_d$, $b$b be a vector in $R_d$. For an arbitrary Borel set $A\subset R_d$ we set
\begin{gather*}
P_n(A)=P\{X_1+\dots+X_n-b\in A\},
\\
\Delta_n(A)=|P_n(a)-\Phi(A)|,
\end{gather*}
where $\Phi(A)$ is the probability function of a standard normal vector in $R_d$. In this note are obtained estimates for $\Delta_n(A)$, where $A$ belongs to the class of convex Borel sets in $R_d$.
@article{MZM_1978_23_4_a14,
author = {L. V. Rozovskii},
title = {An estimate of the speed of convergence in the multidmensional central limit theorem without moment hypotheses},
journal = {Matemati\v{c}eskie zametki},
pages = {627--640},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a14/}
}
TY - JOUR AU - L. V. Rozovskii TI - An estimate of the speed of convergence in the multidmensional central limit theorem without moment hypotheses JO - Matematičeskie zametki PY - 1978 SP - 627 EP - 640 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a14/ LA - ru ID - MZM_1978_23_4_a14 ER -
L. V. Rozovskii. An estimate of the speed of convergence in the multidmensional central limit theorem without moment hypotheses. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 627-640. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a14/