$H$-transformations in Riemannian spaces
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 617-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Riemannian space $V_n$ ($n=mr$), equipped with an integrable regular $H$-structure isomorphic to a hypercomplex algebra $h$ ($\dim h=r$), is considered as a real realization of a hypercomplex manifold ${\mathop V\limits^*}_m$ over the algebra $h$. The geometry of ${\mathop V\limits^*}_m$ can be mapped into the geometry of $V_n$. In particular, with the transformations of ${\mathop V\limits^*}_m$ are associated $H$-transformations (preserving the $H$-structure of the space) in $V_n$. The $H$-conformal and the $H$-projective transformations of $V_n$ are investigated.
@article{MZM_1978_23_4_a13,
     author = {V. V. Navrozov},
     title = {$H$-transformations in {Riemannian} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {617--625},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/}
}
TY  - JOUR
AU  - V. V. Navrozov
TI  - $H$-transformations in Riemannian spaces
JO  - Matematičeskie zametki
PY  - 1978
SP  - 617
EP  - 625
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/
LA  - ru
ID  - MZM_1978_23_4_a13
ER  - 
%0 Journal Article
%A V. V. Navrozov
%T $H$-transformations in Riemannian spaces
%J Matematičeskie zametki
%D 1978
%P 617-625
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/
%G ru
%F MZM_1978_23_4_a13
V. V. Navrozov. $H$-transformations in Riemannian spaces. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 617-625. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/