$H$-transformations in Riemannian spaces
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 617-625
Voir la notice de l'article provenant de la source Math-Net.Ru
A Riemannian space $V_n$ ($n=mr$), equipped with an integrable regular $H$-structure isomorphic to a hypercomplex algebra $h$ ($\dim h=r$), is considered as a real realization of a hypercomplex manifold ${\mathop V\limits^*}_m$ over the algebra $h$. The geometry of ${\mathop V\limits^*}_m$ can be mapped into the geometry of $V_n$. In particular, with the transformations of ${\mathop V\limits^*}_m$ are associated $H$-transformations (preserving the $H$-structure of the space) in $V_n$. The $H$-conformal and the $H$-projective transformations of $V_n$ are investigated.
@article{MZM_1978_23_4_a13,
author = {V. V. Navrozov},
title = {$H$-transformations in {Riemannian} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {617--625},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/}
}
V. V. Navrozov. $H$-transformations in Riemannian spaces. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 617-625. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a13/