A~formula for the Chebyshev PSI function
Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 497-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula expressing the Chebyshev $\psi$ function in terms of the characteristic values of the Laplace–Beltrami operator on the fundamental domain of a modular group and the hyperbolic classes of conjugate elements of this group is derived.
@article{MZM_1978_23_4_a0,
     author = {A. B. Venkov},
     title = {A~formula for the {Chebyshev} {PSI} function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {497--503},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a0/}
}
TY  - JOUR
AU  - A. B. Venkov
TI  - A~formula for the Chebyshev PSI function
JO  - Matematičeskie zametki
PY  - 1978
SP  - 497
EP  - 503
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a0/
LA  - ru
ID  - MZM_1978_23_4_a0
ER  - 
%0 Journal Article
%A A. B. Venkov
%T A~formula for the Chebyshev PSI function
%J Matematičeskie zametki
%D 1978
%P 497-503
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a0/
%G ru
%F MZM_1978_23_4_a0
A. B. Venkov. A~formula for the Chebyshev PSI function. Matematičeskie zametki, Tome 23 (1978) no. 4, pp. 497-503. http://geodesic.mathdoc.fr/item/MZM_1978_23_4_a0/