Oscillation of solutions of a~system of differential equations
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 401-404
Voir la notice de l'article provenant de la source Math-Net.Ru
The system
$$
u'_1=a_1(t)|u_2|^{\lambda_1}\operatorname{sign}u_2,\qquad u'_2=-a_2(t)|u_1|^{\lambda_2}\operatorname{sign}u_1,\eqno(1)
$$
is considered, where the functions $a_i:[0,+\infty)\to\mathbf R$ $(i=1,2)$ are locally summable, $\lambda_i>0$ $(i=1,2)$ and $\lambda_1\cdot\lambda_2=1$. Sufficient conditions are obtained for all solutions of system (1) to be oscillating. Furthermore, functions $a_i(t)$ $(i=1,2)$ are, generally speaking, not assumed to be nonnegative.
@article{MZM_1978_23_3_a7,
author = {J. D. Mirzov},
title = {Oscillation of solutions of a~system of differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {401--404},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a7/}
}
J. D. Mirzov. Oscillation of solutions of a~system of differential equations. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a7/