Moduli of continuity of functions, defined on a~zero-dimensional group
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 379-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the condition $\omega\equiv \{\omega_n\}_0^\infty\searrow0$ is a criterion of modulus of continuity in the spaces $C(G)$, $L(G)$, and $L_2(G)$ of functions defined on a zero-dimensional compact Abelian group $G$.
@article{MZM_1978_23_3_a5,
     author = {A. I. Rubinshtein},
     title = {Moduli of continuity of functions, defined on a~zero-dimensional group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {379--388},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/}
}
TY  - JOUR
AU  - A. I. Rubinshtein
TI  - Moduli of continuity of functions, defined on a~zero-dimensional group
JO  - Matematičeskie zametki
PY  - 1978
SP  - 379
EP  - 388
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/
LA  - ru
ID  - MZM_1978_23_3_a5
ER  - 
%0 Journal Article
%A A. I. Rubinshtein
%T Moduli of continuity of functions, defined on a~zero-dimensional group
%J Matematičeskie zametki
%D 1978
%P 379-388
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/
%G ru
%F MZM_1978_23_3_a5
A. I. Rubinshtein. Moduli of continuity of functions, defined on a~zero-dimensional group. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 379-388. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/