Moduli of continuity of functions, defined on a~zero-dimensional group
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 379-388
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the condition $\omega\equiv \{\omega_n\}_0^\infty\searrow0$ is a criterion of modulus of continuity in the spaces $C(G)$, $L(G)$, and $L_2(G)$ of functions defined on a zero-dimensional compact Abelian group $G$.
@article{MZM_1978_23_3_a5,
author = {A. I. Rubinshtein},
title = {Moduli of continuity of functions, defined on a~zero-dimensional group},
journal = {Matemati\v{c}eskie zametki},
pages = {379--388},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/}
}
A. I. Rubinshtein. Moduli of continuity of functions, defined on a~zero-dimensional group. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 379-388. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a5/