Conjugate functions of several variables in the class $\operatorname{Lip}_\alpha$
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 361-372
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that if a function $f$ of a single variable belongs to the class $\operatorname{Lip}(\alpha,C(\mathbf T))$ $(0<\alpha<1)$, then its conjugate function also belongs to the same class; in other words, the class $\operatorname{Lip}(\alpha,C(\mathbf T))$ $(0<\alpha<1)$ is invariant with respect to the operator of conjugation acting in it. In the two-dimensional case the class $\operatorname{Lip}(\alpha,C(\mathbf T^2))$ $(0<\alpha<1)$ is no longer invariant with respect to conjugate functions of two variables. Here a final result elucidating the full character of violation of invariance of the class $\operatorname{Lip}(\alpha,C(\mathbf T^N))$ $(0<\alpha<1)$ with respect to the multidimensional conjugation operator acting in it is established.
@article{MZM_1978_23_3_a3,
author = {M. M. Lekishvili},
title = {Conjugate functions of several variables in the class $\operatorname{Lip}_\alpha$},
journal = {Matemati\v{c}eskie zametki},
pages = {361--372},
year = {1978},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a3/}
}
M. M. Lekishvili. Conjugate functions of several variables in the class $\operatorname{Lip}_\alpha$. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 361-372. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a3/