Homological equations and topological properties of $S^1$-extensions over an ergodic rotation of the circle
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 463-470
Cet article a éte moissonné depuis la source Math-Net.Ru
A description is given of the set of $\beta\in[0;1]$, such that the homological equation $$ f(x+\beta)-f(x)=g(x+\alpha)-g(x) $$ has a continuous solution, where $f(x)$ is a continuous periodic function, $f(x+1)=f(x)$. The result obtained is applied in studying the property of relative separability of $S^1$-extensions over an ergodic rotation of the circle.
@article{MZM_1978_23_3_a13,
author = {A. A. Gura},
title = {Homological equations and topological properties of $S^1$-extensions over an ergodic rotation of the circle},
journal = {Matemati\v{c}eskie zametki},
pages = {463--470},
year = {1978},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a13/}
}
TY - JOUR AU - A. A. Gura TI - Homological equations and topological properties of $S^1$-extensions over an ergodic rotation of the circle JO - Matematičeskie zametki PY - 1978 SP - 463 EP - 470 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a13/ LA - ru ID - MZM_1978_23_3_a13 ER -
A. A. Gura. Homological equations and topological properties of $S^1$-extensions over an ergodic rotation of the circle. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 463-470. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a13/