The number of generators and orders of Abelian subgroups of finite p-groups
Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 337-341
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f$ ($F$) be the smallest function such that every finite $p$-group, all of whose Abelian subgroups are generated by at most n elements (all of whose Abelian subgroups have orders at most $p^n$, has at most $f(n)$ generators (has order not exceeding $p^{F(n)}$). It is established that the functions $f$ and $F$ have quadratic order of growth.
@article{MZM_1978_23_3_a0,
author = {A. Yu. Ol'shanskii},
title = {The number of generators and orders of {Abelian} subgroups of finite p-groups},
journal = {Matemati\v{c}eskie zametki},
pages = {337--341},
year = {1978},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a0/}
}
A. Yu. Ol'shanskii. The number of generators and orders of Abelian subgroups of finite p-groups. Matematičeskie zametki, Tome 23 (1978) no. 3, pp. 337-341. http://geodesic.mathdoc.fr/item/MZM_1978_23_3_a0/