Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 237-248
Cet article a éte moissonné depuis la source Math-Net.Ru
Restoration from the generalized spectral function of the equations \begin{gather*} b_0y_0+a_0y_1=\lambda y_2, \\ a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1}=\lambda y_n,\quad n=1,2,3,\dots, \end{gather*} where $a_n$ and $b_n$ are arbitrary complex numbers, $a_n\ne0$ ($n=0,1,2,\dots$), $\lambda$ is a complex parameter, and $\{y_n\}_0^\infty$ infin is the required solution, is investigated. Necessary and sufficient conditions for solvability of the inverse problem are obtained, and the restoration procedure is described.
@article{MZM_1978_23_2_a6,
author = {G. Sh. Guseinov},
title = {Determination of an infinite non-self-adjoint {Jacobi} matrix from its generalized spectral function},
journal = {Matemati\v{c}eskie zametki},
pages = {237--248},
year = {1978},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a6/}
}
G. Sh. Guseinov. Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 237-248. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a6/