A~class of trigonometric series
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 213-222
Voir la notice de l'article provenant de la source Math-Net.Ru
Trigonometric series with coefficients $a_k\to0$ under the condition
$$
(\exists\,p\in R,p>1):\biggl(\sum_{n=1}^\infty\biggl\{\sum_{k=n}^\infty|\Delta a_k|^p/n\biggr\}^{1/p}\infty\biggr).
$$
are considered. It is shown that, under these conditions, the cosine series is a Fourier series for which the condition $a_n\ln n\to0$ is the criterion for convergence in the metric of $L$. For the sine series, this is true under the further assumption that $\sum_{n=1}^\infty|a_n|/n\infty$.
@article{MZM_1978_23_2_a3,
author = {G. A. Fomin},
title = {A~class of trigonometric series},
journal = {Matemati\v{c}eskie zametki},
pages = {213--222},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/}
}
G. A. Fomin. A~class of trigonometric series. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/