A~class of trigonometric series
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

Trigonometric series with coefficients $a_k\to0$ under the condition $$ (\exists\,p\in R,p>1):\biggl(\sum_{n=1}^\infty\biggl\{\sum_{k=n}^\infty|\Delta a_k|^p/n\biggr\}^{1/p}\infty\biggr). $$ are considered. It is shown that, under these conditions, the cosine series is a Fourier series for which the condition $a_n\ln n\to0$ is the criterion for convergence in the metric of $L$. For the sine series, this is true under the further assumption that $\sum_{n=1}^\infty|a_n|/n\infty$.
@article{MZM_1978_23_2_a3,
     author = {G. A. Fomin},
     title = {A~class of trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/}
}
TY  - JOUR
AU  - G. A. Fomin
TI  - A~class of trigonometric series
JO  - Matematičeskie zametki
PY  - 1978
SP  - 213
EP  - 222
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/
LA  - ru
ID  - MZM_1978_23_2_a3
ER  - 
%0 Journal Article
%A G. A. Fomin
%T A~class of trigonometric series
%J Matematičeskie zametki
%D 1978
%P 213-222
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/
%G ru
%F MZM_1978_23_2_a3
G. A. Fomin. A~class of trigonometric series. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a3/