Approximation by Fourier sums of classes of functions with several bounded derivatives
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 197-212
Cet article a éte moissonné depuis la source Math-Net.Ru
An ordered estimate is obtained for the approximation by Fourier sums, in the metric $\widetilde{\mathscr L}$, $q=(q_1,\dots,q_n)$, $1, $j=1,\dots,n$, of classes of periodic functions of several variables with zero means with respect to all their arguments, having $m$ mixed derivatives of order $\alpha^1,\dots,\alpha_i^m$, $\alpha^i\in R^n$. which are bounded in the metrics of$\widetilde{\mathscr L}_{p^1},\dots,\widetilde{\mathscr L}_{p^m}$, $p^i=(p_1^i,\dots,p_n^i)$, $1, $i=1,\dots,m$, $j=1,\dots,n$ by the constants $\beta_1,\dots,\beta_m$, respectively.
@article{MZM_1978_23_2_a2,
author = {\`E. M. Galeev},
title = {Approximation by {Fourier} sums of classes of functions with several bounded derivatives},
journal = {Matemati\v{c}eskie zametki},
pages = {197--212},
year = {1978},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/}
}
È. M. Galeev. Approximation by Fourier sums of classes of functions with several bounded derivatives. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 197-212. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/