Approximation by Fourier sums of classes of functions with several bounded derivatives
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 197-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ordered estimate is obtained for the approximation by Fourier sums, in the metric $\widetilde{\mathscr L}$, $q=(q_1,\dots,q_n)$, $1$, $j=1,\dots,n$, of classes of periodic functions of several variables with zero means with respect to all their arguments, having $m$ mixed derivatives of order $\alpha^1,\dots,\alpha_i^m$, $\alpha^i\in R^n$. which are bounded in the metrics of$\widetilde{\mathscr L}_{p^1},\dots,\widetilde{\mathscr L}_{p^m}$, $p^i=(p_1^i,\dots,p_n^i)$, $1$, $i=1,\dots,m$, $j=1,\dots,n$ by the constants $\beta_1,\dots,\beta_m$, respectively.
@article{MZM_1978_23_2_a2,
     author = {\`E. M. Galeev},
     title = {Approximation by {Fourier} sums of classes of functions with several bounded derivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--212},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Approximation by Fourier sums of classes of functions with several bounded derivatives
JO  - Matematičeskie zametki
PY  - 1978
SP  - 197
EP  - 212
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/
LA  - ru
ID  - MZM_1978_23_2_a2
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Approximation by Fourier sums of classes of functions with several bounded derivatives
%J Matematičeskie zametki
%D 1978
%P 197-212
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/
%G ru
%F MZM_1978_23_2_a2
È. M. Galeev. Approximation by Fourier sums of classes of functions with several bounded derivatives. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 197-212. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a2/