Certain classes of continuous linear operations
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 285-296
Voir la notice de l'article provenant de la source Math-Net.Ru
Certain classes of continuous linear operators in Banach and locally convex spaces are studied. A characterization of operators $T:X\to Y$, transforming bounded sets of the Banach space $X$ into conditionally weakly compact sets of the Banach space $Y$, is given, and also a particular case where $X=C(K)$ is considered. It is proved that if $E$ is a Fréchet space and $F$ is a complete ($\mathscr{DF}$)-space, then the classes of absolutely summing and Nikodýmizing operators from $E$ into $F$ coincide.
@article{MZM_1978_23_2_a12,
author = {O. I. Reinov},
title = {Certain classes of continuous linear operations},
journal = {Matemati\v{c}eskie zametki},
pages = {285--296},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/}
}
O. I. Reinov. Certain classes of continuous linear operations. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/