Certain classes of continuous linear operations
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 285-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain classes of continuous linear operators in Banach and locally convex spaces are studied. A characterization of operators $T:X\to Y$, transforming bounded sets of the Banach space $X$ into conditionally weakly compact sets of the Banach space $Y$, is given, and also a particular case where $X=C(K)$ is considered. It is proved that if $E$ is a Fréchet space and $F$ is a complete ($\mathscr{DF}$)-space, then the classes of absolutely summing and Nikodýmizing operators from $E$ into $F$ coincide.
@article{MZM_1978_23_2_a12,
     author = {O. I. Reinov},
     title = {Certain classes of continuous linear operations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - Certain classes of continuous linear operations
JO  - Matematičeskie zametki
PY  - 1978
SP  - 285
EP  - 296
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/
LA  - ru
ID  - MZM_1978_23_2_a12
ER  - 
%0 Journal Article
%A O. I. Reinov
%T Certain classes of continuous linear operations
%J Matematičeskie zametki
%D 1978
%P 285-296
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/
%G ru
%F MZM_1978_23_2_a12
O. I. Reinov. Certain classes of continuous linear operations. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a12/