Condition of conjugacy of $WCG$-spaces
Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 281-284
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a $WCG$-space $E$ is conjugate to a Banach space if and only if its conjugate space $E'$ contains a norm-closed total subspace $M$, consisting of functionals which attain supremum on the unit sphere. Moreover, $M'=E$ in the duality established between $E$ and Eprime. An example, showing that this statement is in general not true for an arbitrary Banach space, is given.
@article{MZM_1978_23_2_a11,
author = {A. N. Plichko},
title = {Condition of conjugacy of $WCG$-spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {281--284},
year = {1978},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a11/}
}
A. N. Plichko. Condition of conjugacy of $WCG$-spaces. Matematičeskie zametki, Tome 23 (1978) no. 2, pp. 281-284. http://geodesic.mathdoc.fr/item/MZM_1978_23_2_a11/