Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 67-78
Cet article a éte moissonné depuis la source Math-Net.Ru
For functions $f$ which are bounded throughout the plane $R^2$ together with the partial derivatives $f^{(3,0)}$, $f^{(0,3)}$, inequalities \begin{gather*} \|f^{(1,1)}\|\le\sqrt[3]3\|f\|^{1/3}\|f^{(3,0)}\|^{1/3}\|f^{(0,3)}\|^{1/3}, \\ \|f_e^{(2)}\|\le\sqrt[3]3\|f\|^{1/3}(\|f^{(3,0)}\|^{1/3}|e_1|+\|f^{(0,3)}\|^{1/3}|e_2|)^2, \end{gather*} are established, where $\|\cdot\|$ the upper bound on $R^2$ of the absolute values of the corresponding function, andf $f_e^{(2)}$ is the second derivative in the direction of the unit vector $e=(e_1,e_2)$. Functions are exhibited for which these inequalities become equalities.
@article{MZM_1978_23_1_a7,
author = {V. N. Konovalov},
title = {Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives},
journal = {Matemati\v{c}eskie zametki},
pages = {67--78},
year = {1978},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a7/}
}
V. N. Konovalov. Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a7/