Elementary representations of the Laguerre group
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of representations of the Laguerre group in nuclear spaces is studied. The Laguerre group is the group of matrices of order two with determinant 1 over the ring of dual numbers. The question of irreducibility is considered, and a classification of bilinear invariant functionals, intertwining operators, and Hermitian invariant functionals is obtained.
@article{MZM_1978_23_1_a2,
     author = {V. F. Molchanov},
     title = {Elementary representations of the {Laguerre} group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/}
}
TY  - JOUR
AU  - V. F. Molchanov
TI  - Elementary representations of the Laguerre group
JO  - Matematičeskie zametki
PY  - 1978
SP  - 31
EP  - 40
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/
LA  - ru
ID  - MZM_1978_23_1_a2
ER  - 
%0 Journal Article
%A V. F. Molchanov
%T Elementary representations of the Laguerre group
%J Matematičeskie zametki
%D 1978
%P 31-40
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/
%G ru
%F MZM_1978_23_1_a2
V. F. Molchanov. Elementary representations of the Laguerre group. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/