Elementary representations of the Laguerre group
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of representations of the Laguerre group in nuclear spaces is studied. The Laguerre group is the group of matrices of order two with determinant 1 over the ring of dual numbers. The question of irreducibility is considered, and a classification of bilinear invariant functionals, intertwining operators, and Hermitian invariant functionals is obtained.
@article{MZM_1978_23_1_a2,
author = {V. F. Molchanov},
title = {Elementary representations of the {Laguerre} group},
journal = {Matemati\v{c}eskie zametki},
pages = {31--40},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/}
}
V. F. Molchanov. Elementary representations of the Laguerre group. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a2/