Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 137-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every real matrix $A$ can be put in correspondence with a certain stochastic matrix $P$ in such a way that the coefficient of ergodicity $\alpha(P)$ of the matrix $P$ enables us to give an estimate of the spectral radius of the matrix $A$. This estimate takes into account the signs of the elements of $A$, which makes it in many cases more accurate than the generally known estimates. In the case where one of the characteristic values of the matrix $A$ and the characteristic vector corresponding to it are known, an estimate of the localization of the remaining characteristic values of the matrix $A$ is obtained.
@article{MZM_1978_23_1_a14,
     author = {Yu. A. Pykh},
     title = {Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a14/}
}
TY  - JOUR
AU  - Yu. A. Pykh
TI  - Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices
JO  - Matematičeskie zametki
PY  - 1978
SP  - 137
EP  - 142
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a14/
LA  - ru
ID  - MZM_1978_23_1_a14
ER  - 
%0 Journal Article
%A Yu. A. Pykh
%T Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices
%J Matematičeskie zametki
%D 1978
%P 137-142
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a14/
%G ru
%F MZM_1978_23_1_a14
Yu. A. Pykh. Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a14/