Scattered spaces not having scattered compactifications
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 127-136
Cet article a éte moissonné depuis la source Math-Net.Ru
Some examples of scattered spaces not having scattered compactifications are given, which solves a problem of Semadeni. Thus, let $S$ be any extremally disconnected dense-in-itself subspace of $\beta N\setminus N$. Then for every point $\xi\in S$ the $N\cup\{\xi\}$ does not have any scattered compactification.
@article{MZM_1978_23_1_a13,
author = {V. I. Malykhin},
title = {Scattered spaces not having scattered compactifications},
journal = {Matemati\v{c}eskie zametki},
pages = {127--136},
year = {1978},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/}
}
V. I. Malykhin. Scattered spaces not having scattered compactifications. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 127-136. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/