Scattered spaces not having scattered compactifications
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 127-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some examples of scattered spaces not having scattered compactifications are given, which solves a problem of Semadeni. Thus, let $S$ be any extremally disconnected dense-in-itself subspace of $\beta N\setminus N$. Then for every point $\xi\in S$ the $N\cup\{\xi\}$ does not have any scattered compactification.
@article{MZM_1978_23_1_a13,
     author = {V. I. Malykhin},
     title = {Scattered spaces not having scattered compactifications},
     journal = {Matemati\v{c}eskie zametki},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - Scattered spaces not having scattered compactifications
JO  - Matematičeskie zametki
PY  - 1978
SP  - 127
EP  - 136
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/
LA  - ru
ID  - MZM_1978_23_1_a13
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T Scattered spaces not having scattered compactifications
%J Matematičeskie zametki
%D 1978
%P 127-136
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/
%G ru
%F MZM_1978_23_1_a13
V. I. Malykhin. Scattered spaces not having scattered compactifications. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 127-136. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a13/