The differential equations for the feynman amplitude of a single-loop graph with four vertices
Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 113-119
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of second-order partial differential equations for the Feynman amplitude of a single-loop graph with four vertices is obtained. It is proved that the symbol of differential operators of this system is singular (in the sense of I. N. Bernshtein) on the Landau manifold of the Feynman amplitude under consideration. The derived system of differential equations is a multidimensional generalization of the system of differential equations for the hypergeometric function of two variables of Appell and Kampé de Fériet.
@article{MZM_1978_23_1_a11,
author = {V. A. Golubeva and V. Z. \`Enol'skii},
title = {The differential equations for the feynman amplitude of a single-loop graph with four vertices},
journal = {Matemati\v{c}eskie zametki},
pages = {113--119},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a11/}
}
TY - JOUR AU - V. A. Golubeva AU - V. Z. Ènol'skii TI - The differential equations for the feynman amplitude of a single-loop graph with four vertices JO - Matematičeskie zametki PY - 1978 SP - 113 EP - 119 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a11/ LA - ru ID - MZM_1978_23_1_a11 ER -
%0 Journal Article %A V. A. Golubeva %A V. Z. Ènol'skii %T The differential equations for the feynman amplitude of a single-loop graph with four vertices %J Matematičeskie zametki %D 1978 %P 113-119 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a11/ %G ru %F MZM_1978_23_1_a11
V. A. Golubeva; V. Z. Ènol'skii. The differential equations for the feynman amplitude of a single-loop graph with four vertices. Matematičeskie zametki, Tome 23 (1978) no. 1, pp. 113-119. http://geodesic.mathdoc.fr/item/MZM_1978_23_1_a11/