Monotone transformations and differential properties of functions
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 859-871
Cet article a éte moissonné depuis la source Math-Net.Ru
The class of all real functions of a single variable which become everywhere differentiable after a certain homeomorphic transformation of coordinate axis is described. Moreover, various examples about differential properties of functions are given (in particular, an elementary construction of a nonconstant continuously differentiable real function of two variables, every value of which is critical-the example of Whitney, is given).
@article{MZM_1977_22_6_a7,
author = {L. I. Kaplan and C. G. Slobodnik},
title = {Monotone transformations and differential properties of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {859--871},
year = {1977},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a7/}
}
L. I. Kaplan; C. G. Slobodnik. Monotone transformations and differential properties of functions. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 859-871. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a7/