Some spectral properties of a bundle of linear operators in Banach space
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 847-857
Cet article a éte moissonné depuis la source Math-Net.Ru
The spectral properties of a bunch $A-\lambda B$, $D(A)\subseteq D(B)$, of linear closed densely defined operators in Banach space are considered. Our main result is a theorem to the effect that the spectrum of the bunch can be expanded with respect to a pair of direct sums; the theorem generalizes the celebrated theorem of Riesz concerning the expansion of the spectrum of an operator.
@article{MZM_1977_22_6_a6,
author = {V. V. Ditkin},
title = {Some spectral properties of a~bundle of linear operators in {Banach} space},
journal = {Matemati\v{c}eskie zametki},
pages = {847--857},
year = {1977},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a6/}
}
V. V. Ditkin. Some spectral properties of a bundle of linear operators in Banach space. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 847-857. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a6/