Excesses of systems of exponential functions
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 803-814
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions on the closeness of real sequences $\{\lambda_n\}$ and $\{\mu_n\}$ are studied which imply the equality of the excesses of the systems $\{\exp(i\lambda_nx)\}$ and $\{\exp(i\lambda_nx)\}$ in the space $L^2(-a,a)$. A theorem is formulated in terms of the difference of the sequences $\{\lambda_n\}$ and $\{\mu_n\}$ enumerating the functions. In the corollaries of the theorem, conditions are given in terms of the behavior of the difference $\lambda_n-\mu_n$. An example is constructed showing that the condition $\lambda_n-\mu_n\to0$ alone is not sufficient for equality of the excesses.
@article{MZM_1977_22_6_a2,
author = {A. M. Sedletskii},
title = {Excesses of systems of exponential functions},
journal = {Matemati\v{c}eskie zametki},
pages = {803--814},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a2/}
}
A. M. Sedletskii. Excesses of systems of exponential functions. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a2/