The Lipschitz condition for a metric projection operator in the space $C[a,b]$
Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 795-801.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the metric projection operator onto a finite-dimensional Chebyshev subspace $M\subset C[a,b]$ locally uniformly satisfies the Lipschitz condition on the set $C[a,b]\setminus M$.
@article{MZM_1977_22_6_a1,
     author = {A. V. Marinov},
     title = {The {Lipschitz} condition for a metric projection operator in the space $C[a,b]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {795--801},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a1/}
}
TY  - JOUR
AU  - A. V. Marinov
TI  - The Lipschitz condition for a metric projection operator in the space $C[a,b]$
JO  - Matematičeskie zametki
PY  - 1977
SP  - 795
EP  - 801
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a1/
LA  - ru
ID  - MZM_1977_22_6_a1
ER  - 
%0 Journal Article
%A A. V. Marinov
%T The Lipschitz condition for a metric projection operator in the space $C[a,b]$
%J Matematičeskie zametki
%D 1977
%P 795-801
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a1/
%G ru
%F MZM_1977_22_6_a1
A. V. Marinov. The Lipschitz condition for a metric projection operator in the space $C[a,b]$. Matematičeskie zametki, Tome 22 (1977) no. 6, pp. 795-801. http://geodesic.mathdoc.fr/item/MZM_1977_22_6_a1/