Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a~differential operator
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 679-698
Voir la notice de l'article provenant de la source Math-Net.Ru
The question of the convergence of expansions in the eigenfunctions of a differential operator with discontinuous coefficients at a point $x_0$ of discontinuity of the coefficients is studied. Given an arbitrary function $f(x)$ in the class $L_2$, a corresponding function $\widetilde f_{x_0}(x)$ is constructed which is such that at the point $x_0$ the eigenfunction expansion of $f(x)$ diverges with the expansion of $\widetilde f_{x_0}(x)$ into a Fourier trigonometric series.
@article{MZM_1977_22_5_a8,
author = {V. A. Il'in},
title = {Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a~differential operator},
journal = {Matemati\v{c}eskie zametki},
pages = {679--698},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a8/}
}
TY - JOUR AU - V. A. Il'in TI - Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a~differential operator JO - Matematičeskie zametki PY - 1977 SP - 679 EP - 698 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a8/ LA - ru ID - MZM_1977_22_5_a8 ER -
V. A. Il'in. Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a~differential operator. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 679-698. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a8/