Optimal interpolation of differentiable periodic functions with bounded higher derivative
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 663-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the optimal recovery of functions from the set $W_M^r$ is considered. It is shown, in particular, that for such recovery the use of information about the values of the function at $2n$ points gives the error in the norm of the space $C$ two times, and $\pi K_r/(2K_{r+1})$ times ($K_r$ is the Favard constant) in the norm of the space $L$, less than that by the use of the information about the values of the function and its derivatives at $n$ points.
@article{MZM_1977_22_5_a6,
     author = {V. L. Velikin},
     title = {Optimal interpolation of differentiable periodic functions with bounded higher derivative},
     journal = {Matemati\v{c}eskie zametki},
     pages = {663--670},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a6/}
}
TY  - JOUR
AU  - V. L. Velikin
TI  - Optimal interpolation of differentiable periodic functions with bounded higher derivative
JO  - Matematičeskie zametki
PY  - 1977
SP  - 663
EP  - 670
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a6/
LA  - ru
ID  - MZM_1977_22_5_a6
ER  - 
%0 Journal Article
%A V. L. Velikin
%T Optimal interpolation of differentiable periodic functions with bounded higher derivative
%J Matematičeskie zametki
%D 1977
%P 663-670
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a6/
%G ru
%F MZM_1977_22_5_a6
V. L. Velikin. Optimal interpolation of differentiable periodic functions with bounded higher derivative. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 663-670. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a6/