Distribution of the supremum of sums of independent variables with negative drift
Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 763-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be a sequence of identically distributed independent random variables, $M\xi_1=\mu0$, $M\xi_1^2\infty$; $S_0=0$, $S_n=\xi_1+\xi_2+\dots+=xi_n$, $n\ge1$; $\overline S=\sup\{S_n:n\ge0\}$. The asymptotic behavior of $P(\overline S\ge t)$ as $t\to\infty$ is studied. If $\int_t^\infty P(\xi_1\ge x)\,dx=O(\tau(t))$, then $$ P(\overline S\ge t)-\frac1{|\mu|}\int_t^\infty P(\xi_1\ge x)\,dx=O(\tau(t)/t), $$ $\tau(t)$ is a positive function, having regular behavior at infinity.
@article{MZM_1977_22_5_a14,
     author = {M. S. Sgibnev},
     title = {Distribution of the supremum of sums of independent variables with negative drift},
     journal = {Matemati\v{c}eskie zametki},
     pages = {763--770},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a14/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Distribution of the supremum of sums of independent variables with negative drift
JO  - Matematičeskie zametki
PY  - 1977
SP  - 763
EP  - 770
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a14/
LA  - ru
ID  - MZM_1977_22_5_a14
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Distribution of the supremum of sums of independent variables with negative drift
%J Matematičeskie zametki
%D 1977
%P 763-770
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a14/
%G ru
%F MZM_1977_22_5_a14
M. S. Sgibnev. Distribution of the supremum of sums of independent variables with negative drift. Matematičeskie zametki, Tome 22 (1977) no. 5, pp. 763-770. http://geodesic.mathdoc.fr/item/MZM_1977_22_5_a14/